\(\int \frac {(a+a \cos (c+d x)) (A+C \cos ^2(c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [133]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 165 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 a (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a (5 A+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-2/5*a*(3*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*
a*(5*A+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/7*a*A*si
n(d*x+c)/d/cos(d*x+c)^(7/2)+2/5*a*A*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/21*a*(5*A+7*C)*sin(d*x+c)/d/cos(d*x+c)^(3/
2)+2/5*a*(3*A+5*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3111, 3100, 2827, 2716, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a (5 A+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {2 a (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]

[Out]

(-2*a*(3*A + 5*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*a*(5*A + 7*C)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*a
*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + (2*a*A*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (2*a*(5*A + 7*C)*S
in[c + d*x])/(21*d*Cos[c + d*x]^(3/2)) + (2*a*(3*A + 5*C)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3111

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m +
 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp
[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e +
 f*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2}{7} \int \frac {\frac {7 a A}{2}+\frac {1}{2} a (5 A+7 C) \cos (c+d x)+\frac {7}{2} a C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4}{35} \int \frac {\frac {5}{4} a (5 A+7 C)+\frac {7}{4} a (3 A+5 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {1}{5} (a (3 A+5 C)) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{7} (a (5 A+7 C)) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a (5 A+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} (a (3 A+5 C)) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} (a (5 A+7 C)) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 a (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (5 A+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a (5 A+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.01 (sec) , antiderivative size = 895, normalized size of antiderivative = 5.42 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=a \left (\sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {(3 A+5 C) \csc (c) \sec (c)}{5 d}+\frac {A \sec (c) \sec ^4(c+d x) \sin (d x)}{7 d}+\frac {\sec (c) \sec ^3(c+d x) (5 A \sin (c)+7 A \sin (d x))}{35 d}+\frac {\sec (c) \sec ^2(c+d x) (21 A \sin (c)+25 A \sin (d x)+35 C \sin (d x))}{105 d}+\frac {\sec (c) \sec (c+d x) (25 A \sin (c)+35 C \sin (c)+63 A \sin (d x)+105 C \sin (d x))}{105 d}\right )-\frac {5 A (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d \sqrt {1+\cot ^2(c)}}-\frac {C (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}+\frac {3 A (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d}+\frac {C (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d}\right ) \]

[In]

Integrate[((a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]

[Out]

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(((3*A + 5*C)*Csc[c]*Sec[c])/(5*d) + (A*Sec[c]*S
ec[c + d*x]^4*Sin[d*x])/(7*d) + (Sec[c]*Sec[c + d*x]^3*(5*A*Sin[c] + 7*A*Sin[d*x]))/(35*d) + (Sec[c]*Sec[c + d
*x]^2*(21*A*Sin[c] + 25*A*Sin[d*x] + 35*C*Sin[d*x]))/(105*d) + (Sec[c]*Sec[c + d*x]*(25*A*Sin[c] + 35*C*Sin[c]
 + 63*A*Sin[d*x] + 105*C*Sin[d*x]))/(105*d)) - (5*A*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5
/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot
[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d
*Sqrt[1 + Cot[c]^2]) - (C*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[
c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot
[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) + (3*A
*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[
c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c
]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]
]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2
))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d) + (C*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 +
 (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Ta
n[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Ta
n[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*C
os[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[
c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(810\) vs. \(2(197)=394\).

Time = 19.26 (sec) , antiderivative size = 811, normalized size of antiderivative = 4.92

method result size
default \(\text {Expression too large to display}\) \(811\)
parts \(\text {Expression too large to display}\) \(1002\)

[In]

int((a+cos(d*x+c)*a)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(1/10*A/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+
1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c
)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+1/2*A*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/
2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+1/2*C*(-1/6*cos(1/2*d
*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2)))+1/2*C/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(
1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.47 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} {\left (5 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (5 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (21 \, {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{3} + 5 \, {\left (5 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2} + 21 \, A a \cos \left (d x + c\right ) + 15 \, A a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

1/105*(-5*I*sqrt(2)*(5*A + 7*C)*a*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5
*I*sqrt(2)*(5*A + 7*C)*a*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*I*sqrt(
2)*(3*A + 5*C)*a*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c
))) + 21*I*sqrt(2)*(3*A + 5*C)*a*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 - I*sin(d*x + c))) + 2*(21*(3*A + 5*C)*a*cos(d*x + c)^3 + 5*(5*A + 7*C)*a*cos(d*x + c)^2 + 21*A*a*cos(d*x + c
) + 15*A*a)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(9/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(9/2), x)

Mupad [B] (verification not implemented)

Time = 2.92 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.07 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)))/cos(c + d*x)^(9/2),x)

[Out]

(2*A*a*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/
2)) + (2*A*a*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2))/(7*d*cos(c + d*x)^(7/2)*(sin(c + d*x)^
2)^(1/2)) + (2*C*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*
x)^2)^(1/2)) + (2*C*a*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c
 + d*x)^2)^(1/2))